Convergence and superconvergence analysis of finite element methods on graded meshes for singularly and semisingularly perturbed reaction–diffusion problems
نویسندگان
چکیده
منابع مشابه
Convergence Analysis of Finite Element Solution of One-dimensional Singularly Perturbed Differential Equations on Equidistributing Meshes
In this paper convergence on equidistributing meshes is investigated. Equidistributing meshes, or more generally approximate equidistributing meshes, are constructed through the well-known equidistribution principle and a so-called adaptation (or monitor) function which is defined based on estimates on interpolation error for polynomial preserving operators. Detailed convergence analysis is giv...
متن کاملFinite Volume Superconvergence Approximation for One-dimesional Singularly Perturbed Problems
We analyze finite volume schemes of arbitrary order r for the one-dimensional singularly perturbed convection-diffusion problem on the Shishkin mesh. We show that the error under the energy norm decays as (Nln(N + 1)), where 2N is the number of subintervals of the primal partition. Furthermore, at the nodal points, the error in function value approximation super-converges with order (Nln(N + 1)...
متن کاملFinite Element Analysis of an Exponentially Graded Mesh for Singularly Perturbed Problems
We present the mathematical analysis for the convergence of an h version Finite Element Method (FEM) with piecewise polynomials of degree p ≥ 1, de ned on an exponentially graded mesh. The analysis is presented for a singularly perturbed reaction-di usion and a convection-di usion equation in one dimension. We prove convergence of optimal order and independent of the singular perturbation param...
متن کاملConvergence Analysis of a Multiscale Finite Element Method for Singularly Perturbed Problems
Abstract. In this paper we perform an error analysis for a multiscale finite element method for singularly perturbed reaction–diffusion equation. Such method is based on enriching the usual piecewise linear finite element trial spaces with local solutions of the original problem, but do not require these functions to vanish on each element edge. Bubbles are the choice for the test functions all...
متن کاملStability and accuracy of adapted finite element methods for singularly perturbed problems
The stability and accuracy of a standard finite element method (FEM) and a new streamline diffusion finite element method (SDFEM) are studied in this paper for a one dimensional singularly perturbed connvection-diffusion problem discretized on arbitrary grids. Both schemes are proven to produce stable and accurate approximations provided that the underlying grid is properly adapted to capture t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.08.025